Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits.
نویسندگان
چکیده
QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S subunits that lack Qsr1p. In vitro subunit-joining assays and analysis of a mutant conditional for the synthesis of Qsr1p demonstrate that 60S subunits devoid of Qsr1p are unable to join with 40S subunits whereas 60S subunits that contain either wild-type or mutant forms of the protein are capable of subunit joining. The defective 60S subunits result from a reduced association of mutant Qsr1p with 60S subunits. These results indicate that Qsr1p is required for ribosomal subunit joining.
منابع مشابه
Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits.
Dbp6p is an essential putative ATP-dependent RNA helicase that is required for 60S-ribosomal-subunit assembly in the yeast Saccharomyces cerevisiae (D. Kressler, J. de la Cruz, M. Rojo, and P. Linder, Mol. Cell. Biol. 18:1855-1865, 1998). To identify factors that are functionally interacting with Dbp6p, we have performed a synthetic lethal screen with conditional dbp6 mutants. Here, we describe...
متن کاملSQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1.
QSR1 is an essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein required for joining of 40S and 60S subunits. Truncations of QSR1 predicted to encode C-terminally truncated forms of Qsr1p do not substitute for QSR1 but do act as dominant negative mutations, inhibiting the growth of yeast when expressed from an inducible promoter. The dominant negative mutants e...
متن کاملThe Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis.
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but...
متن کاملNascent 60S ribosomal subunits enter the free pool bound by Nmd3p.
Nmd3p from yeast is required for the export of the large (60S) ribosomal subunit from the nucleus (Ho et al., 2000). Here, we show that Nmd3p forms a stable complex with free 60S subunits. Using an epitope-tagged Nmd3p, we show that free 60S subunits can be coimmunoprecipitated with Nmd3p. The interaction was specific for 60S subunits; 40S subunits were not coimmunoprecipitated. Using this copr...
متن کاملA Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export
The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 17 9 شماره
صفحات -
تاریخ انتشار 1997